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ABSTRACT

We present a comparison of three cluster-finding algorithms from imaging data usingMonte Carlo simula-
tions of clusters embedded in a 25 deg2 region of Sloan Digital Sky Survey (SDSS) imaging data: the matched
filter (MF; Postman et al., published in 1996), the adaptive matched filter (AMF; Kepner et al., published in
1999), and a color-magnitude filtered Voronoi tessellation technique (VTT). Among the two matched filters,
we find that the MF is more efficient in detecting faint clusters, whereas the AMF evaluates the redshifts and
richnesses more accurately, therefore suggesting a hybrid method (HMF) that combines the two. The HMF
outperforms the VTT when using a background that is uniform, but it is more sensitive to the presence of a
nonuniform galaxy background than is the VTT; this is due to the assumption of a uniform background in
the HMFmodel. We thus find that for the detection thresholds we determine to be appropriate for the SDSS
data, the performance of both algorithms are similar; we present the selection function for each method eval-
uated with these thresholds as a function of redshift and richness. For simulated clusters generated with a
Schechter luminosity function (M�

r ¼ �21:5 and � ¼ �1:1), both algorithms are complete for Abell richness
&1 clusters up to z � 0:4 for a sample magnitude limited to r ¼ 21. While the cluster parameter evaluation
shows a mild correlation with the local background density, the detection efficiency is not significantly
affected by the background fluctuations, unlike previous shallower surveys.

Key words: cosmology: observations — galaxies: clusters: general — large-scale structure of universe —
methods: data analysis

1. INTRODUCTION

Over the past few decades, clusters of galaxies have been
used as valuable tools for cosmological studies: they are
tracers of large-scale structure (Bahcall 1988; Huchra et al.
1990; Nichol et al. 1992; Nichol, Briel, & Henry 1994; Pea-

cock & Dodds 1994; Collins et al. 2000), their number den-
sity is a constraint on cosmological models (Gunn & Oke
1975; Hoessel, Gunn, & Thuan 1980; Evrard 1989; Bahcall
et al. 1997; Carlberg et al. 1997; Oukbir & Blanchard 1997;
Reichart et al. 1999), and they act as laboratories for prob-
ing the formation and evolution of galaxies and their mor-
phologies (Dressler 1980; Butcher & Oemler 1984; Gunn &
Dressler 1988; Dressler et al. 1997). While it is sometimes
sufficient simply to have a large sample of clusters, most
cosmological studies require a homogeneous sample with
accurate understanding of the selection biases and the
completeness of the catalog.

The Abell cluster catalog is by far the most widely used
catalog to date (Abell 1958; Abell, Corwin, & Olowin 1989).
Like some of the other cluster catalogs that are available
(see, e.g., Zwicky et al. 1961–1968; Gunn, Hoessel, & Oke
1986), the Abell catalog was constructed entirely by visual
inspection of photographic plates. Although the human eye
is a sophisticated and efficient detector for galaxy clusters, it
suffers from subjectivity and incompleteness, and visual
inspection is extremely time consuming. For cosmological
studies, the major disadvantage of such visually constructed
catalogs is that it is difficult to quantify selection biases and
the selection function.

The main motivation for automated cluster-finding
schemes is thus to overcome these major drawbacks of vis-
ual catalogs, namely speed, objectivity, and reproducibility.
The first automated cluster finding in optical surveys was
attempted by Shectman (1985) and was followed by several
variants of this peak-finding method: Lumsden et al. (1992)
with the Edinburgh/Durham Southern Galaxy Catalogue
(EDSGC; Nichol, Collins, & Lumsden 2001) and Dalton et
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al. (1992) with the Automatic Plate Measuring Facility
(APM) survey (Maddox et al. 1990). Lahav & Gull (1989)
introduced the concept of fitting the observed apparent
diameter distribution to the absolute distribution to obtain
an estimate of the distance to each cluster, which led to the
development of the matched filter algorithm (Postman et al.
1996, hereafter P96). The matched filter technique has been
widely used, and several variants have been further devel-
oped (Kawasaki et al. 1998; Schuecker & Böhringer 1998;
Lobo et al. 2000), including the adaptive matched filter
(Kepner et al. 1999, hereafter K99; Kepner & Kim 2000). In
addition, thanks to the availability of multiband CCD
imaging data, several cluster-finding methods have been put
forward that use the color characteristics of galaxy clusters
(Annis et al. 2002; Gladders & Yee 2000; Goto et al. 2001;
Nichol et al. 2001b). While these methods can be efficient,
each inevitably has its own biases, depending on the nature
and extent of constraints that have been imposed for the
selection. Little effort has been made to date to compare the
performances of these different methods.

In this paper, we present a comparison of three different
cluster-finding algorithms, using a Monte Carlo experiment
with simulated clusters. The algorithms we analyze are the
matched filter algorithm (P96), the adaptive matched filter
algorithm (K99), and the Voronoi tessellation technique,
which is introduced in detail in x 2.2. The last technique,
which uses color information, is in part based on previous
cluster-finding efforts that use the classical Voronoi tessella-
tion as a peak finder (Ramella et al. 1999; Ebeling 1993;
Kim et al. 2000) but is introduced here for the first time in its
current form. These three methods constitute the basis of a
cluster catalog derived from 150 deg2 of Sloan Digital Sky
Survey (hereafter SDSS; York et al. 2000) commissioning
data, which we present in Paper II (Kim et al. 2002). Work
in progress (Bahcall et al. 2002) will present cluster catalogs
using a wide range of finding techniques. This paper is thus
geared toward understanding the behavior of the cluster-
finding algorithms in the SDSS data.

In x 2 we describe the various cluster detection algo-
rithms, and in x 3 we present theMonte Carlo experiment in
which these cluster-finding algorithms were run. The results
and comparison between methods are presented in x 4. We
summarize in x 5. Throughout this paper, we assume a cos-
mology in which �m ¼ 0:3, �� ¼ 0:7, and H0 ¼ 70 km s�1

Mpc�1, unless noted otherwise.

2. CLUSTER SELECTION ALGORITHMS

The matched filter algorithm, which was first presented as
a fully automated cluster-finding scheme in P96, has been
widely adapted for a variety of cluster detection efforts (see,
e.g., Olsen et al. 1999; Scodeggio et al. 1999; Bramel, Nichol,
& Pope 2000, hereafter BNP00; Postman, Lauer, & Oegerle
2002; Willick et al. 2001). The adaptive matched filter algo-
rithm (K99; Kepner &Kim 2000), which is described below,
should be a substantial improvement both in content and
efficiency over the original matched filter algorithm; the
major changes being the adoption of a full likelihood func-
tion and the incorporation of three-dimensional (redshift)
information. Nevertheless, unlike the P96 matched filter,
the adaptive matched filter algorithm has not yet been
applied to real data and therefore lacks the optimizations
and adaptations that exposure to real data would give. Thus
we have chosen to apply both the original matched filter

(hereafter MF) and the adaptive matched filter (hereafter
AMF) for comparison and cross-checking purposes.
Although the AMF should in theory converge to the MF
results in the two-dimensional case, there are various differ-
ences in the details of the two codes (e.g., peak selection cri-
teria, final parameter evaluations, likelihood function
detailed further below) that can cause the final results to dif-
fer somewhat. The fact that they are two completely inde-
pendent codes written in two different languages (C and
IDL) also makes the cross-check particularly useful.

The matched filter technique is an efficient likelihood
method for finding clusters in two-dimensional imaging
data. A model cluster radial profile and galaxy luminosity
function are used to construct a matched filter in position
and magnitude space from which a cluster likelihood map is
generated. Using the magnitudes rather than simply search-
ing for density enhancements suppresses false detections
that occur by chance projection. Of course, the results are
dependent on the assumed filter shape and extent; they are
thus affected by the assumptions made for the universal
radial profile and cluster luminosity function used in the
algorithm. In other words, the cluster parameters that are
derived from the algorithm are somewhat dependent on the
model that was assumed for the cluster, and the probability
for detecting a certain cluster may differ as the cluster shape
varies (e.g., spherical versus elongated), or as the cluster
parameters deviate from the assumed cluster model. In fact,
most clusters are elongated and are known to have a variety
of shapes (e.g., Bautz & Morgan 1970 type, Rood & Sastry
1971 type). The third method, the Voronoi tessellation tech-
nique (hereafter VTT), was in part motivated by this model-
dependent aspect of the matched filter algorithms (MF and
AMF) to examine if any severe biases occur in the selection
because of model assumptions. In addition to the fact that
the VTT assumes no intrinsic cluster properties (except for
very mild constraints in color-magnitude space; see below),
it is simple and fast (for n ¼ 106 galaxies, it takes seconds on
a 400MHz CPU to evaluate Voronoi tessellation).

The details of the MF and the AMF are given in the
respective references, so here we only describe them briefly
(x 2.1), mainly comparing them carefully and emphasizing
their differences. This is followed by a detailed recipe for the
VTT in x 2.2.

2.1. Matched Filter Techniques

The foundation for both matched filter techniques is the
model for the total number of galaxies per unit area per unit
observed flux l:

nmodelð�; l; zcÞdA dl ¼ ½nf ðlÞ þ �cl ncð�; l; zcÞ�dA dl ; ð1Þ

which consists of contributions from background field gal-
axies (nf) and the cluster galaxies (�clnc) at redshift zc, where
�cl is the cluster richness measure (see below). Here, h is the
angular distance from the cluster center, and dA ¼ 2��d�.
The background number density (nf) is simply taken from
the global number counts of the survey. The essential ingre-
dient of the matched filter is the model for the cluster num-
ber density, �clnc, which is a product of a projected cluster
density profile and a luminosity profile for a cluster at red-
shift zc:

�cl ncð�; l; zcÞ ¼ �cl �cðrÞ
dr

d�

� �2

�cðLÞ
dL

dl

� �
; ð2Þ
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where r is the projected comoving radius and L is the abso-
lute luminosity. The conversion from physical units to
apparent units includes proper treatment for cosmology
and the K-correction. For the projected density profile,
we use the modified Plummer law model (see K99,
Appendix A),

�cðrÞ /
½1þ ðr=rcÞ2��n=2 � ½1þ ðrmax=rcÞ2��n=2 ;

for r < rmax ;

0 ; for r � rmax ;

8><
>: ð3Þ

where n � 2, the slope of the profile, rc is the core radius,
and rmax is a cutoff radius that approximates the extent of a
cluster. This cutoff radius naturally constrains the radius of
the search; forcing �cðrmaxÞ ¼ 0 is equivalent to putting a
‘‘ taper’’ on the filter that reduces the ‘‘ sidelobes’’ and nar-
rows the ‘‘ beam.’’ This is standard practice in detection
theory, which improves the spatial accuracy and makes the
process more robust (at the cost of slightly reducing the sen-
sitivity of the filter), as well as reducing the contamination
that arises from other nearby clusters.

Any method of smoothing the data consists of choosing a
filter shape and a filter bandwidth. Numerical experiments
show that the efficiency of the estimator is much more sensi-
tive to the filter bandwidth than is the filter shape itself (Sil-
verman 1986, p. 40–43). Hence determining the appropriate
values of rmax and rc is more important than our particular
choice of the cluster profile functional form. P96 (see x 4 in
their paper) discuss the effect that the cutoff radius has on
their detection efficiency and conclude rmax ¼ 1 h�1 Mpc as
an optimal choice, which we adopt as an appropriate value.
Increasing the value of rmax further will significantly degrade
the signal-to-noise ratio; the cluster signal will go down
since less weight is given to the core, and noise from the
background and nearby clusters will increase as more
weight is given to galaxies at larger radii.

For the luminosity profile, we adopt a standard Schechter
luminosity function (Schechter 1976),

�cðLÞdL / ðL=L�Þ�e�L=L�dðL=L�Þ : ð4Þ

The overall normalizations of �c and �c are chosen such
that the cluster richness measure �cl is the total cluster lumi-
nosity within rmax in units of L*, i.e., Lclð� rmaxÞ ¼ �clL�
(see P96 and K99 for details). The Abell richness NA is
defined by the number of cluster galaxies (within r < 1:5 h�1

Mpc) with magnitudes between m3 and m3 þ 2, where m3 is
the magnitude of the third brightest galaxy in the cluster.
The Abell richness class (RC; Abell 1958) is determined
by this quantity NA; 30 � NA � 49 for RC = 0, 50 �
NA � 79 for RC = 1, 80 � NA � 129 for RC = 2, and
130 � NA � 199 for RC = 3. The relation between NA and
�cl (with rmax ¼ 1 h�1 Mpc) is found to be approximately
NA � ð2=3Þ�cl (Bahcall & Cen 1993; P96) but with large
scatter (P96). This relation is addressed further in Paper II
with the clusters detected from the SDSS imaging data.

The difference between the MF and the AMF starts from
the definition of the likelihood function. The MF adopts a
Gaussian likelihood function, which is based on the
assumption that there are enough galaxies in each virtual
bin ( j) in (position, magnitude) space that the Poisson prob-
ability distribution can be approximated by a Gaussian.
Furthermore, it assumes that the background galaxy distri-

bution (nf) is uniform and large enough to dominate the
noise, therefore the likelihood can be written as

Lð�Þ ¼
X
j

�2 lnPj

¼ �2
X
j

ln

 
1ffiffiffiffiffiffiffiffiffiffiffiffi
2�n

ð jÞ
f

q exp

(
�
½nð jÞdata � n

ð jÞ
modelð�Þ�

2

2n
ð jÞ
f

)!
:

ð5Þ

By approximating the summation with an integral, using
equation (1) for nmodel, setting � � nc=nf , and dropping all
terms irrelevant to h, one obtains a likelihood function that
is linear in the data and easy to calculate:

L ¼ �cl

X
i

�i ; ð6Þ

where

�cl ¼

X
i
�iR

�ð�; lÞncð�; lÞdA dl
; ð7Þ

where i stands for each galaxy, and the sum is over every gal-
axy within rmax. The richness measure �cl is obtained by first
solving the equation @L=@�cl ¼ 0 (see K99, Appendix C,
or P96 for details).

In the AMF, this likelihood function is referred to as the
‘‘ coarse filter.’’ Since it is simple and easy to calculate,
AMF uses equation (6) to construct a ‘‘ coarse’’ likelihood
map in order to select clusters, by identifying peaks from
this map. However, the Gaussian approximation breaks
down when there are not enough galaxies, i.e., especially for
poor clusters or those at high redshift, and in general the
parameters that are evaluated by this coarse filter are found
to be somewhat biased (P96 discuss empirical correction
factors for this bias, which we will not discuss here in detail).
Hence, the AMF defines a second likelihood function that
assumes a Poisson likelihood instead of a Gaussian (Dalton
et al. 1994). This is called the ‘‘ fine filter’’ and reduces to

Lfine ¼ ��clNc þ
X
i

lnð1þ �cl �iÞ ; ð8Þ

where�cl is obtained by solving

Nc ¼
X
i

�i
1þ �cl �i

: ð9Þ

Nc is the number of galaxies expected in a �cl ¼ 1 cluster
(see K99, Appendix C, for the derivation). The resulting
fine-filter likelihood function is nonlinear and requires more
computations to evaluate. However, as it is based on correct
statistics, the evaluated cluster parameters (redshift and
richness) are expected to be more accurate. The AMF thus
adopts a two-layered approach, first to identify clusters by
peaks in the coarse-filter likelihood map, and then to evalu-
ate proper parameters by the fine filter on those selected
cluster positions. The computing time difference between
the coarse and the fine filter is due to solving equation (8),
which must be done at every grid position; using only the
fine filter would take approximately 10 times longer. In
addition, the AMF approach allows an internal cross-check
for the evaluation of z and�cl.
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The MF and AMF have further differences that turn out,
as we will see, to be quite important. TheMF uses a uniform
grid in two-dimensional space on which the likelihood func-
tion is evaluated for a series of redshift values that span the
desired redshift range for the cluster search. The grid size is
a function of redshift assumed; we use a grid size of one-half
the core radius at each redshift to ensure proper sampling.
Hence the result is a series of likelihood maps evaluated for
each assumed redshift, i.e., a map indicating the likelihood
for the existence of a cluster at that redshift. The AMF
instead uses a so-called naturally adaptive grid, evaluating
the likelihood function at the galaxy positions themselves,
meaning that as we go to higher redshift, the effective resolu-
tion becomes finer as necessary. Such a nonuniform grid is
slightly more complicated to handle but ensures that a
unique galaxy lies at the center of each cluster, and no com-
putation is wasted on unnecessary positions. As a result,
instead of producing series of likelihood maps to be stored
at each assumed redshift value, the AMF calculates the like-
lihood values on a redshift grid for each galaxy separately
and records the redshift and likelihood at which the likeli-
hood is maximized. In other words, the outcome is two
quantities at each galaxy: the peak likelihood that a cluster
lies at this point and the corresponding estimated redshift.
This saves a significant amount of disk space relative to the
MF and is cleverly structured to reduce an intermediate step
in the analysis (step 5 in Table 1), but as we shall see below,
this approach has drawbacks.

Once the coarse likelihood map is generated, the two
algorithms differ in the final steps of the cluster selection
process. The MF, having stored likelihood maps for each
redshift bin, finds local maxima in each map and registers
them as candidate clusters when they lie above a prescribed
threshold for each map (e.g., 95th percentile within the map;
approximately 2 � level). This is repeated for every redshift
bin, then all the cluster candidates from all redshift bins are
combined together to filter out overlaps and to find the most
likely redshift for each cluster—the redshift at which the
peak signal is maximized. Each cluster also has a signifi-
cance of detection �det that is translated from the pixel dis-
tribution of the likelihood signals at the final redshift
assuming Gaussian statistics. We perform a final cut on this
quantity (�det � �cut) to select significant detections. On the
other hand, the AMF has already stored the most likely red-
shift of each galaxy point and therefore simply locates the
position of the highest likelihood signal, registers it as a clus-
ter, eliminates all galaxies around this point within a sphere
of a given cluster size (rmax), then looks for the next highest

peak, and so on, until the likelihood signal (Lcoarse) drops
below a prescribed threshold (Lcut). The difference between
the two algorithms is not merely the order in which the pro-
cedures are executed (the MF locates clusters in angular
space first and then determines the redshift, while the AMF
determines the redshift first for every point in space and then
filters out the clusters in angular space), but that the AMF
uses a threshold in likelihood that is constant, thus redshift
independent, while the MF uses a threshold that differs for
each redshift. The effect that is caused by these differences is
discussed in x 5.

Finally, the AMF is completed by evaluating the fine filter
on the cluster positions that have been selected, then deter-
mining the redshift at which the peak of the fine likelihood
occurred and calculating the richness �cl for that redshift.
Table 1 summarizes the procedures and the parameters out-
lined above for the two matched filter algorithms.

2.2. Voronoi Tessellation Technique

The Voronoi tessellation made its debut in astrophysics as
a convenient way of modeling the large-scale structure of
the universe (Icke & van de Weygaert 1987; Ling 1987).
With a distribution of seeds (nuclei), Voronoi tessellation
creates polyhedral cells that contain one seed each, enclos-
ing all the volume that is closest to its seed. This is the defini-
tion of a Voronoi cell. This natural partitioning of space by
Voronoi tessellation has been used to model the large-scale
distribution of galaxies. This is achieved by envisioning the
seeds to be the expansion centers of ‘‘ voids,’’ the planes that
intersect two adjacent cells as ‘‘ walls,’’ the ridges where
three walls intersect as ‘‘ filaments,’’ and the vertices where
four filaments come together as galaxy clusters (van deWey-
gaert & Icke 1989).

A slightly different application of the Voronoi tessellation
is to identify X-ray sources by locating the overdensity in X-
ray photon counts (Ebeling 1993; Ebeling & Wiedenmann
1993); this is directly related to our application for cluster
finding, as we now describe. The galaxy positions are input
as the seeds for the Voronoi tessellation, and the Voronoi
cell around each galaxy is interpreted as the effective area
that each galaxy occupies in space. Taking the inverse of
these areas gives a local density at each galaxy in two dimen-
sions. This information is then used to threshold and select
galaxy members that live in highly overdense regions, which
we identify as clusters. We do so by calculating the density
contrast at each galaxy position � � ð�� ���Þ=��� ¼
ð �AA �AÞ=A, where A is the area of the Voronoi cells, and �AA

TABLE 1

Summary of the Procedures for the TwoMatched Filter Algorithms

Step MF AMF

1........ Input galaxy catalog (position, magnitude) Same

2........ EvaluateLcoarse on a uniform grid for assumed zi CalculateLcoarse on a z-grid for a galaxy position xi
3........ Repeat step 2 for i = 0, n (n = No. of z bins) Repeat step 2 for i = 0,m (m = No. of galaxies)

4........ Save all likelihoodmaps for all zi’s Save zcoarse andLcoarse whereLcoarse(z) is maximum, for all xi’s

5........ Calculate � for each local maximumwithin eachmap, register

cluster candidates if � > �cut

. . .

6........ Combine all candidates from all zimaps, filter overlaps and

define zest for each cluster

Find xiwith highestLcoarse, register as a cluster, eliminate nearby xi’s,

repeat untilLcoarse < Lcut

7........ . . . Rerun fine filter on cluster positions from step 6, determine zfine and�fine

8........ Final product: cluster positions, zest,�cl, �det using �det > �cut Final product: cluster positions, zfine,�fine,Lfine usingLcoarse > Lcut

No. 1, 2002 CLUSTERS OF GALAXIES IN SDSS. I. 23



is the mean area of all cells. We then impose a cut in the den-
sity contrast � > �c to select galaxies in high-density envi-
ronments. One can, in fact, use a more rigorous statistical
approach for the detection criteria, using statistics of Voro-
noi tessellation for a random distribution of seeds (Kiang
1966; see Ramella et al. 1999, 2001 for details). However, as
our approach described below is empirical, we adhere to a
simple cut in constant density contrast whose value is tested
by a Monte Carlo method using simulated clusters, as
described in x 3.3.

The SDSS is currently working on determining photo-
metric redshifts for galaxies in the imaging data, but until
they are available, we are confined to working with the two-
dimensional projected distribution; therefore, we need to
divide the galaxy sample to group them into comparable
redshifts in order to enhance the cluster detectability. There-
fore, our recipe for the VTT uses a priori knowledge of char-
acteristics of cluster member galaxies, namely, the color-
magnitude relation.

Galaxies within a cluster usually exhibit a tight correla-
tion between their colors and magnitudes. It is well known
that the core of a typical rich cluster consists mainly of
early-type galaxies (i.e., Hubble types E and S0; Hubble
1936; Oemler 1974; Postman & Geller 1984; Dressler 1980,
1984) that all have very similar red colors. This includes the
brightest cluster galaxy (hereafter BCG), whose properties
have been well studied (Schneider, Gunn, & Hoessel 1983;
Postman & Lauer 1995). Figures 1a and 1b show the color-
magnitude relation (C-M diagram) of Abell clusters 168 and
295 respectively, observed with the SDSS camera; the dia-
gram shows only those galaxies whose cluster membership
has been confirmed spectroscopically by the ESO Nearby
Abell Cluster Survey (ENACS; Katgert et al. 1998). The
BCG is marked with a plus sign, and the narrow horizontal
line of galaxies at nearly constant color is referred to as the
E/S0 ridgeline (Visvanathan & Sandage 1977; Annis et al.
1999). The color-magnitude relation for E/S0 galaxies has
been well known since Baum (1959), who first noted that

Fig. 1.—Color-magnitude (C-M) diagrams of four different clusters. In (a) and (b) are known Abell clusters, and plotted here are the data from only those
galaxies with confirmed membership according to the ENACS (Katgert et al. 1998). All data are taken from SDSS photometry. (c) and (d ) C-M diagrams of
new clusters found in the SDSS itself by the matched filter techniques. Both clusters were confirmed visually through three-color (g, r, and i) composite images,
and their redshifts (z ¼ 0:219 and z ¼ 0:345) were obtained by the SDSS spectroscopic survey (York et al. 2000). The circles represent galaxies within 1 h�1

70
Mpc of the detected center (r ¼ 4<74 and r ¼ 3<45), and the contours represent the C-M distribution of all galaxies from a 25 deg2 region around the cluster.
The thick solid lines in all four panels show the C-M filtering for the VTT (see text) at the corresponding redshifts, enclosing the region that most cluster gal-
axies inhabit for a given redshift. The g*�r* colors are frommodel magnitudes and r* is in Petrosianmagnitudes.

24 KIM ET AL. Vol. 123



fainter early-type galaxies tend to be bluer, showing a nega-
tive slope of the E/S0 ridgeline in C-M diagrams (see also
Visvanathan & Sandage 1977; Lugger 1984; Metcalfe, God-
win, & Peach 1994). It has been suggested that this slope
evolves with redshift (Gladders et al. 1998) and even differs
with richness (Stoughton et al. 1998). However, as we see in
the C-M diagrams, the slope is very shallow in (g*�r*) ver-
sus r* space and is a negligible effect for the recipe that we
now describe.

We will use this characteristic shape in the C-M diagram
to select against foreground and background galaxies. Thus
we carry out the following approach: first select a redshift,
then apply a Voronoi tessellation on all galaxies in a
restricted region of the C-M diagram. This region is shown
as solid lines in Figures 1a and 1b, for a redshift of
z ¼ 0:045, whose limits enclose most of the galaxies that are
confirmed members of the cluster. Figures 1c and 1d show
similar C-M diagrams of cluster candidates at higher red-
shifts, found by both the MF and the AMF from the SDSS.
These clusters were visually confirmed with SDSS images,
and the redshifts of their BCGs were obtained by the SDSS
spectroscopic survey (York et al. 2000). Since membership
information is not available, we simply plot all the galaxies
that are within 1 h�1 Mpc radius from the cluster center as
circles. For comparison, the C-M distribution of all the gal-
axies in a survey region of 25 deg2 is shown in contours and
small dots. The difference in these distributions illustrates
the efficiency of using C-M information in discriminating
cluster members against the background population. Here
again, the areas enclosed by the solid lines are those that are
selected for detecting a cluster at z ¼ 0:22 and 0.35, respec-
tively, which includes most of the galaxies within r ¼ 1 h�1

Mpc around the cluster center.
The empirical C-M limits we use are as follows:

r�bcg � 1 < r� < r�bcg þ 5 ; ð10Þ
ar� þ b < ðg� � r�Þ < ðg� � r�Þbcg þ 0:3 ; ð11Þ

where a and b are given by a simple linear relation with red-
shift,

a ¼ �1:295z� 0:084; b ¼ 30:13zþ 0:88 ; ð12Þ

and where r�bcg and (g*�r*)bcg are the Petrosian r* magni-
tude and the model g*�r* color of the BCG, respectively
(see x 3.1 for description of magnitudes and colors). These
relations are established empirically by examining the C-M
relations of known clusters (e.g., Figs. 1a and 1b) and rich
clusters of galaxies found by the matched filter algorithms
and the MaxBCG technique (Annis et al. 2002) from the
SDSS data itself. The limits are chosen to generously
include most of the galaxies within 1 h�1 Mpc of the cluster
center. The lower limit in magnitudes, 5 mag fainter than
that of the BCG, is chosen to cover the magnitude range of
spectroscopically confirmed cluster members from the
ENACS (Katgert et al. 1998) for low-redshift clusters
(z < 0:1). This is a moderate coverage of cluster galaxies for
a typical cluster luminosity function (corresponding to
Mlim � L� þ 3); also note the recent findings of fossil
groups whose difference between the BCG and the second
luminous galaxy can be as large as 4–5 mag (Zabludoff &
Mulchaey 1998).

These C-M limits are shown in summary for a range of
redshifts, from z ¼ 0:04 to z ¼ 0:5, in Figure 2. Here, the

track of BCGs for the above redshifts are also shown as
large circles (filled and open), which provides the basis for
determining these limits for each redshift (eqs. [9] and [11]).
Finally, the C-M distribution of all galaxies in the survey
region are shown as contours and small dots for compari-
son. The BCG track is computed assuming a constant abso-
lute magnitude Mðr�Þbcg ¼ �23 with no evolution (see
Eisenstein et al. 2001). We use the PEGASE evolutionary
synthesis model (Fioc & Rocca-Volmerange 1997) to gener-
ate the spectral energy distribution of the BCG; this is then
redshifted and convolved with the SDSS filter responses to
obtain colorK-corrections.

Once we have applied these cuts for a given redshift, we
apply the Voronoi tessellation on the resulting distribution
of galaxies. We then select all galaxies that satisfy � > �c,
where �c is a constant overdensity threshold defined above.
We will set this threshold to �c ¼ 3. Figures 3 and 4 illustrate
this procedure: Figure 3 shows Voronoi tessellation exe-
cuted on all galaxies in the region of Abell 957, whereas Fig-
ure 4 shows only those galaxies that satisfy the C-M cut for
the cluster redshift (z ¼ 0:045). The large circle indicates a
1 h�1 Mpc radius around the cluster center. In both cases,
the circles highlight the overdense galaxies with � > 3. Fig-
ure 4 shows remarkable enhancement of the cluster, while
Figure 3 does not. As we can see, although the C-M limits
are chosen generously in order to ensure proper coverage of
the observed cluster galaxy characteristics, using these limits
provides an important enhancement in the efficiency of clus-
ter selection due to the elimination of a significant back-
ground population.

Fig. 2.—Empirical color-magnitude limits used in the VTT displayed for
a range of redshifts (0:04 � z � 0:5, Dz ¼ 0:02). These limits are used as a
filter to enhance the signal of clusters at a given redshift (see text and eqs. [9]
and [11]). The large circles trace the evolutionary track of a bright red gal-
axy with a constant luminosityMr� ¼ �23, intended to represent the BCG.
Each C-M limit encloses one BCG, and the redshift range of the C-M limits
are labeled. The circles alternate as filled and open for each redshift range
labeled for easy identification. The contours and the small dots show the
C-M distribution of all galaxies in the SDSS survey (taken from a 150
deg2 region of the SDSS commissioning data) for comparison.
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Once we have selected galaxies that highlight densely
populated regions, we have to identify regions with a con-
centration of these ‘‘ high-density’’ galaxies. This is done by
selecting regions in which the number of such galaxies,Nhdg,

within a radius of 0.7 h�1 Mpc at the assumed redshift,
exceeds a certain threshold, such that Nhdg � Ncut. This is
executed around each high-density galaxy, and the center of
a cluster is determined by the one that gives the largestNhdg.
We repeat this process as a function of redshift. Once we
obtain all the cluster candidates for each redshift bin, we go
through a process to filter out significant overlaps to finalize
our selection of clusters. For every significant overlap, we
choose the final cluster and its redshift to be the one that
yields the largest value ofNhdg. The distribution ofNhdg with
respect to redshift is generally highly peaked and therefore
justifies this simple method of determining the redshifts.

Here, we take the high-density galaxy number cut Ncut to
be a constant value, independent of redshift. This may intro-
duce a bias with redshift; the same cluster at higher redshift
will contain fewer galaxies, since the faint magnitude limit
in the C-M cuts (5 mag fainter than the BCG) soon exceeds
the survey magnitude limit as we go to higher redshift. In
order to find the optimal threshold that changes with red-
shift, the algorithm needs to be tested carefully to assure
ourselves that the contamination level (false positives) does
not increase too much. We do not carry out such an analysis
here, as it requires quantitative assessment of false positives,
which is only possible with full N-body simulations, with
complete knowledge of cluster identities. This would also
require proper assignments of colors for the background
and cluster galaxies. Another way to investigate this matter
is to use the real data itself; although properly identifying
false positives can be a slightly tricky business, we do
address this issue of variable Ncut using visual inspection of
cluster candidates in Paper II. However, for the current
paper, we keep our VTT thresholdNcut constant. Therefore,
as with every method, having such potential biases moti-
vates us to evaluate the selection function to assess the frac-
tion of clusters selected at each redshift and richness (x 4.2).
In addition, Nhdg is not intended to measure the richness of
the cluster but is rather a measure of the significance of
detection. In Paper II, the final VTT-selected clusters will be
run through the AMF fine filter for consistent estimation of
the cluster richness and redshift.

3. TESTING THE ALGORITHMS USING
SIMULATED CLUSTERS

The MF was originally developed for the Palomar Dis-
tant Cluster Survey (P96), which is deep (V � 23:8) and nar-
row (5.1 deg2), and has been applied to similar data by
others (e.g., Scodeggio et al. 1999: 12 deg2, I < 23; Postman
et al. 2002: 16 deg2, IAB < 24). Naturally, the algorithm is
optimized for this type of survey, whereas the SDSS is shal-
lower (z < 0:5) and much wider (Paper II will present results
for data over 150 deg2, which is less than 2% of the complete
SDSS survey). The shallower depth makes the large-scale
structure variations much more pronounced in the two-
dimensional distribution, which can affect the matched filter
algorithm’s performance, since it assumes a uniform and
homogeneous background (BNP00). Second, covering a
large area increases the probability of intersecting very
nearby clusters (z. 0:05) that have angular extents as large
as a few degrees. This increases the rate of cluster overlaps,
especially because we go to z � 0:5 for the SDSS. In a two-
dimensional projection, discriminating between two differ-
ent overlapping clusters at two different redshifts using the
algorithms outlined above can be difficult unless the redshift

Fig. 4.—Same as Fig. 3, but the Voronoi tessellation is evaluated only on
the galaxies that satisfy the color-magnitude criteria used in the VTT. See
the solid lines in Fig. 1a or Fig. 2 for these limits. Unlike Fig. 3, the cluster is
now strikingly enhanced by the filled circles, which denote galaxies with
� > 3 evaluated from this Voronoi map.

Fig. 3.—Example of Voronoi tessellation executed on the galaxy distri-
bution around Abell cluster 957 (see Fig. 1a). These are all galaxies with
r� < 21. Each cell encloses one galaxy. The data presented here has a lower
boundary in declination of �J2000 ¼ �1=25, which is why the Voronoi tessel-
lation seems to diverge below. The filled cirlcles mark galaxies with � > 3
(see text), and the large circle has a radius of 1 h�1 Mpc at a redshift of
z ¼ 0:044 (r ¼ 26<4). We do not find any significant overdensity of the filled
circles aroundAbell 957 when using the entire distribution of galaxies.
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gap is sufficiently large (usually Dz& 0:4); this can affect the
completeness of intermediate-redshift clusters. The narrow
pencil-beam surveys, on the other hand, are carried out in
regions known not to have foreground clusters, so they suf-
fer less from this effect. Wide angle, shallow surveys such as
the APM survey or the EDSGC have less range in redshift
and thus also suffer less from this effect. Combining the local
space density of Abell clusters and P96 results and assuming
an unclustered distribution of clusters for simplicity yields a
�15% rate of overlap for Abell RC �0 clusters (using a
1 h�1 Mpc radius for each cluster) for the redshift range of
0:05 � z � 0:5. This rate of overlap will be further enhanced
by taking the nonzero two-point correlation function into
account and shall be addressed further in future work with
the observed space density of clusters from the SDSS.

Each method for detecting clusters has its own biases;
moreover, the sample selected depends sensitively on the
detection threshold. For example, a 20% change in �cut can
result in doubling the final number of clusters in a given
field. Therefore, it is crucial for any cluster identification
study to understand the behavior of the results with respect
to the selected thresholds. Hence, in this section we attempt
to understand the parameters and their limits that play a
crucial role in determining the final cluster selection for the
three algorithms.

Tests of the algorithms are performed on a set of artificial
clusters embedded in two different versions of a background
galaxy distribution: a uniform background and a clustered
one. The latter is taken to be the real galaxy distribution
itself, from the SDSS. The major objectives for these tests
are to determine the best detection thresholds for the final
cluster catalog, to evaluate a realistic selection function for
these thresholds and to examine biases with respect to the
local background density.

In the following, we describe these tests, starting with a
brief description of the SDSS data that we used for the
background.

3.1. SDSS Imaging Data

The SDSS imaging data is taken with an imaging camera
(Gunn et al. 1998) on a wide-field 2.5 telescope, in five broad
bands (u, g, r, i, and z) centered on 3551, 4686, 6166, 7480,
and 8932 Å, respectively (Fukugita et al. 1996; Stoughton et
al. 2002), in drift-scan mode at sidereal rate. This results in
an effective exposure time of 54.1 s, which yields a point-
source magnitude limit of r� � 22:5 (at 1>5 seeing). More
details of the observations and data are covered in York et
al. (2000), Stoughton et al. (2002), and Paper II (and refer-
ences therein).

The data used here and in Paper II are equatorial scan
data taken in 1998 September during the early part of the
SDSS commissioning phase and are part of the SDSS Early
Data Release (runs 94 and 125; Stoughton et al. 2002). A
contiguous area of about 150 deg2 was obtained during two
nights, where the seeing varied from 1>1 to 2>5 (85% of the
data were below 1>8) and with coordinates ranging from
�5	 < R.A. < 55	 and �1=25 < decl. < 1=25. We include
galaxies to r� ¼ 21 mag (Petrosian magnitude; see below), a
conservative limit at which star-galaxy separation is reliable
(see Paper II for details). For the present paper, a subset of
25 deg2 from this data was taken for the test region
described in x 3.3. The coordinates of this region are
10	 < R.A. < 20	 and �1=25 < decl. < 1=25, which was

chosen because it exhibits prominent large-scale structure
and clumpiness.

The magnitude of all objects quoted here are measured in
Petrosian quantities (Petrosian 1976) through the SDSS
photometric pipeline (Lupton et al. 2002). However, the col-
ors of each object quoted are computed from ‘‘model mag-
nitudes.’’ Each galaxy is fitted to two profiles in the r band:
a de Vaucouleurs law and an exponential law. The model
magnitudes in all five bands are computed from the better of
the two r-band fits; the colors obtained from model magni-
tudes are thus a meaningful quantity, since it uses the same
profile in all bands.

3.2. Uniform Background Case and HybridMatched Filter

In order to produce a uniform galaxy background distri-
bution, we took the 25 deg2 region from the SDSS data
described above and randomly repositioned the galaxies
while keeping their photometric properties fixed. This cre-
ates a uniform galaxy background distribution while ensur-
ing that the galaxies otherwise have SDSS-like properties
(luminosity function and colors). The number-magnitude
relation N(r*) to the limiting magnitude r� ¼ 21 is pre-
sented in Yasuda et al. (2001): it shows power-law behavior
to r� ¼ 17, curving below this model at fainter magnitudes,
as expected fromK-corrections and relativistic corrections.

Artificial clusters with six different richnesses were
embedded at eight different redshifts each, giving a total of
48 clusters with different properties. The clusters were gener-
ated with a Schechter luminosity function (� ¼ �1:1,
M�ðr�Þ ¼ �21:5; Blanton et al. 2001) and a modified
Plummer law radial profile (rmax = 1 h�1 Mpc,
rcore ¼ 0:1rmax; see eq. [3]). Each cluster, properly normal-
ized according to its richness �cl, was placed at the corre-
sponding redshift and then trimmed to the survey
magnitude limit (r� ¼ 21). The g*�r* color for each galaxy
was assigned characteristic for a cluster at each redshift (as
shown in Fig. 2). The insertion of simulated cluster galaxies
increased the total number of galaxies in the 25 deg2 region
by 7% to 105, 600 galaxies in total. The top panel of Figure
5 shows the distribution of the 48 artificial clusters over a
10	 
 2=5 area (the parameters of the clusters themselves
are given in the figure caption), and the resulting distribu-
tion when inserted into our uniform background is shown
in the middle panel.

All three cluster-finding algorithms (MF, AMF, and
VTT) were first run on this distribution of clusters in a uni-
form background of galaxies. The goal for this was to test
each algorithm in the simplest case and to find a reasonable
detection threshold for each of them that maximizes the
number of successful detections while keeping the false
detection rate minimal. Although this uniform background
case is far from realistic, it has the advantage of unambigu-
ously recognizing false detections. However, note that the
number of clusters inserted and their distribution of z and
�cl are arbitrary. Thus, neither the fraction of false detec-
tions nor the absolute value of the recovery fraction that we
quote below have physical significance; it is the relative val-
ues for different algorithms that should be noted.

Figure 6 shows the detection efficiencies for all three algo-
rithms; each panel shows the number of successfully recov-
ered clusters (solid curve) and the number of false detections
(dotted curve) for one of the algorithms as a function of the
detection threshold for the 48 clusters inserted into the uni-
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form background. As the detection thresholds are decreased
(going rightward in each panel of Fig. 6), the number of suc-
cessful detections increases, but naturally the rate of false
detections due to Poisson statistics increases as well. Beyond
a certain threshold value, the number of false detections

start to increase extremely rapidly, while the number of suc-
cessful detections only increases slowly; this implies a large
drop in efficiency. Figure 7 shows this in another way, plot-
ting the rate at which the number of successful detection
increases as a function of the number of false detections for
all three algorithms. We thus find a cut at which the success
rate starts to flatten out with respect to the false detection
rate; the vertical dotted line in Figure 7 shows an appropri-
ate choice drawn just after the steepest part of the efficiency
curve. This cut gives 14 false detections over 25 deg2 for all
three methods, 0.56 deg�2, an acceptable level given the
expected surface density of real systems (greater than 5
deg�2; see Paper II). The vertical dashed lines in each panel
of Figure 6 also show this cut, corresponding to �cut = 5.5
for the MF andLcut = 210 for the AMF. For the VTT, the
line indicates Ncut = 9 (with a constant density contrast cut
of �c ¼ 3). We will refer to this cut in subsequent sections as
the detection limit chosen for the uniform background case
(note that �cut will be slightly lower for the final results;
x 4.1). As Figure 7 demonstrates, of all methods, the MF is
the most efficient in recovering clusters for a given number
of false detections.

The additional clusters detected by the MF are clusters
with a weaker signal (low �cl, high z), as seen in Figures 8a
and 8b. These results are obtained using the cuts determined
above. Although the AMF (Fig. 8a, crosses) should in prin-
ciple converge to the MF (Fig. 8a, squares) in the two-
dimensional case, they differ for weak clusters because of
the fact that their peak selection method in the final step is
done differently (refer to x 2.1; Table 1). The parameter eval-
uation, on the other hand, is most accurate with the AMF
fine filter. Figures 8c and 8d show the input parameters for
the clusters, z and �cl, plotted against the parameters eval-
uated by the AMF fine filter. They include the additional
clusters found by theMF. TheMF z estimates show a factor
of �1.5 increase in standard deviation for higher redshift
clusters (z > 0:25), which translates into a larger deviation
in �cl as well, by a similar amount. This result thus calls for

Fig. 5.—Distribution of simulated clusters with different richnesses and
redshifts is shown in the top panel. The clusters are distributed such that the
richness increases from left to right, and the redshift from bottom to top.
The values are �cl = 20, 40, 70, 110, 160, and 220, z = 0.08, 0.14, 0.20, 0.26,
0.32, 0.38, 0.44, and 0.5. Every two columns correspond to a cluster of a
given richness at eight different redshifts. The bottom panel shows these
clusters embedded in a 25 deg2 region of SDSS equatorial scan data. The
middle panel shows the same clusters embedded in a uniform background
generated by randomly repositioning the background galaxies shown in the
bottom.

MF VTT AMF

Fig. 6.—Number of successful detections (solid lines) and the number of false detections (dotted lines) as a function of the detection threshold for each clus-
ter-finding algorithm: MF (left), VTT (middle), and AMF (right). These results are from 48 clusters inserted into a uniform background (Fig. 5, middle). The
MF is more efficient in detecting clusters than the AMF because of differences in the thresholding method. The vertical dashed line is drawn at the thresholds
that yield 14 false detections in a uniform background of 25 deg2; this corresponds to �cut = 5.5, Ncut = 9, and Lcut = 210, yielding maximum completeness
while still keeping the false detection rate less than 10% of the expected surface density of real clusters. Note that for all three algorithms, the ranges shown for
the detection thresholds are calibrated to yield similar numbers of false detections.
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a marriage of the two algorithms in order to maximize the
efficiency of the final result. We have therefore adopted the
following hybrid method for the final matched filter based
cluster finder (hybrid matched filter, hereafter HMF),

1. First theMF creates likelihoodmaps.
2. We threshold at �det = �cut according to the MF to

choose final cluster candidates.
3. Finally, we evaluate the AMF fine filter on these clus-

ter positions to determine�cl and zest.

We use this recipe as the standard matched filter method
throughout the rest of this paper.

3.3. Monte Carlo with a ‘‘Realistic ’’ Background

The previous test, using a uniform background, allowed
us to determine the detection threshold necessary to mini-
mize false detections due to projections in random fields.
We need to apply a realistic background in order to get an
accurate determination of the selection function, including
the effect of large-scale structure and cluster projection
along the line of sight. In relatively shallow surveys like the
APM or the EDSGC, the cluster detection efficiency has
been shown to depend significantly on the local background
density (see BNP00). The SDSS is considerably deeper
(z � 0:5 compared with z � 0:2), and therefore this effect
should be less dramatic because of projection in two dimen-
sions of the real large-scale structure. Nevertheless, as the
bottom panel of Figure 5 shows, the SDSS galaxy distribu-
tion is still far from uniform, and the effect of large-scale
structure on the selection needs to be quantified.

We now place the same set of simulated clusters on the
real SDSS distribution, as shown in the bottom panel of
Figure 5. The effect of the real background is immediately
noticeable even by eye; the low richness clusters (�cl � 40)
are nearly washed out and the intermediate richness
clusters (�cl = 70, 110) start to blend in with the clumpy
background.

The 48 simulated clusters with the properties given in
Figure 5 were inserted into the data at random positions
(unlike the grid distribution in the bottom panel of Fig. 5)
but avoiding overlap with one another. Both the HMF and
the VTT were run on this catalog. This was repeated 100
times. We use the results to test both the detection and
recovery of clusters, and the evaluation of their parameters,
z and �cl. In the next section, we discuss the results from
these tests in three parts. First, we study the effect of the
imposed detection limits; second, we evaluate the selection
function; and finally, we examine the dependence of the
detection efficiency and the recovered parameters on the
local background.

4. RESULTS

4.1. Detection Limits

A set of clusters embedded in a uniform background dis-
tribution is an ideal case. In the real universe, nonunifor-
mity comes in many forms: from large-scale modulations
(great wall, voids, etc.) down to small-scale fluctuations
(e.g., compact groups, close pairs, and triplets, etc.), in addi-
tion to actual clusters of galaxies. It is mainly the small-scale
features aided by projection that will cause the false-positive
rate to increase. Therefore, the false detection rate that was
determined with the uniform background (0.56 deg�2 for
�cut = 5.5 and Ncut = 9) can be regarded as a lower limit for
those thresholds in a realistic background. In addition, the
structure exhibited on a range of scales diminishes the con-
trast of real clusters, making them more difficult to recover.
This implies that these detection thresholds are upper limits
on what they should be in the real universe. As we will see
below, the detection threshold has to be set lower with a
realistic background in order to recover a similar range of
clusters.

For each cluster finder, we determine how many of the
clusters that were detected in the uniform background case
(with the corresponding detection thresholds �cut = 5.5 and
Ncut = 9; see Fig. 8), were also recovered in each Monte
Carlo realization with the SDSS galaxy background. This
recovery ratio was evaluated for different detection thresh-
olds and averaged over all realizations. Figure 9 shows the
results for both the HMF and the VTT for a range of detec-
tion thresholds that are equivalent to those used in Figure 7.
This recovery ratio (relative to the uniform background
case) changes quite rapidly as a function of �cut for the
HMF but stays rather robust as a function of Ncut for the
VTT. This comparison can be misleading since there is no
formal correspondence between Ncut and �cut. However, as
noted above, these ranges are calibrated to yield approxi-
mately the same number of false detections in a uniform
background distribution (see Fig. 6). Given this relation as
a yardstick, the noticeable difference in the slope of the two
curves suggests that the matched filter algorithm results will
be more sensitive to the detection threshold that is chosen,
while a sample based on the VTT is robust to the exact value

Fig. 7.—Number of successful detections as a function of the number of
false detections, as the detection threshold is changed for all three algo-
rithms, in the uniform background case. This is an alternative representa-
tion of the data in Fig. 6. The ranges for the detection thresholds
represented here are 7 � �cut � 4:5 for the HMF (solid line), 13 � Ncut � 5
for the VTT (dashed line), and 450 � Lcut � 160 for the AMF (dotted line).
The vertical dotted line shows the cut for �cut = 5.5, Ncut = 9 and
Lcut = 210, at which the rapid increase of success rate stops with respect to
the number of false detections (same cut as in Fig. 6). For a given number
of false detections, the MF is most efficient in recovering clusters in a uni-
form background.
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of Ncut. This implies in addition, that the matched filter is
more subject to the effects of a nonuniform background,
i.e., the detection efficiency is affected by the background
distribution.

This argument is further supported by the lower recovery
rate of the HMF shown in Figure 9 at the thresholds of
�cut = 5.5 for the HMF and Ncut = 9 for the VTT (dotted
lines; where both algorithms yielded 14 false detections in
the uniform background case). Thus, the detection effi-
ciency of the HMF appears to be more affected by a nonuni-
form background than is the VTT. Indeed, this is not too
surprising as the matched filter algorithm explicitly assumes
a uniform background in its model. In order for the HMF
to achieve the same recovery rate as the VTT, the detection
threshold would need to be lowered to a value of �cut � 4.7
(which greatly increases the number of false detections; this
would yield �60 false detections in a uniform background;
Fig. 6). These fractional recovery rates refer to the sample of
48 clusters over their entire range of z and �cl; hence it does
not apply to an observed sample of clusters with a true rich-

ness function distribution. The clusters that are missed in
the selection are those at the weaker end of the distribution
of signal, which are the most abundant in the universe (i.e.,
poor, distant), therefore the gap between the recovery frac-
tions shown above could be even larger for a more realistic
configuration.

These results do not immediately mean, however, that the
VTT does better overall. Recall from Figure 6 that the
HMF was more efficient in recovering clusters in the uni-
form background to begin with. Given the right choice of
detection thresholds, we show that their performances are
in fact similar in the end. Figure 10 shows the absolute
recovery fraction of inserted clusters, rather than that rela-
tive to the uniform background (Fig. 9), for both the HMF
(solid line) and the VTT (dashed line). This is shown in four
different subgroups in cluster parameter space: low z, low
�cl (bottom left); high z, low �cl (top left); low z, high �cl

(bottom right); and high z, high �cl (top right). For clusters
with the strongest signals (rich and nearby), both algorithms
agree well with very high efficiencies, constant with respect

Fig. 8.—Results for 48 clusters embedded in a uniform background, using the detection threshold from Fig. 6 (see caption), which yields 14 false detections
for each technique. (a) Parameters of the recovered clusters by the MF (squares) and the AMF (crosses). TheMF selection method is more sensitive to weaker
signals, i.e., higher z and lower richness. (b) Clusters that were recovered by the VTT. The VTT is also slightly less efficient than theMF but more efficient than
the AMF. All three algorithms show similar recovery patterns. (c) AMF fine-filter determination of redshift forMF selected clusters (squares in [a]), versus the
input value. (d ) Same as (c), but for the richness measure,�cl. (c) and (d ) are equivalent to the results for the HMF (see text for details).
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to the detection thresholds. For clusters with the weakest
signals (poor, high z), both methods have a very low recov-
ery rate. Apart from the rich nearby regime, the HMF
indeed shows slightly lower efficiencies than the VTT for the
thresholds determined above (�cut = 5.5,Ncut = 9), suggest-
ing a drop in efficiency due to the presence of a nonuniform
background. However, the slopes of the HMF efficiency
curves are much steeper and allow us to bring up the detec-
tion efficiency easily to the VTT performance level by lower-
ing the detection threshold slightly to �cut = 5.2. This
naturally increases the false detection rate of the HMF in
the uniform background case (refer to Fig. 6) by approxi-
mately 80% to 1 deg�2, but since it is less than 20% of the
expected surface density of real clusters (Paper II), we adopt
this new value for �cut as appropriate for selecting clusters
from the SDSS imaging data. The final detection thresholds
determined for both algorithms, �cut = 5.2 and Ncut = 9,
are shown as dotted lines in Figure 10, indicating that the
performance of the two algorithms is very similar.

4.2. Cluster Selection Function

With these detection thresholds, we now assess the overall
performances of both cluster finders for these values in more
detail, an important task for any study that requires a com-
plete sample. We present selection functions evaluated from
the fraction of clusters in each redshift and RC that are
recovered in the Monte Carlo simulations (using a realistic
background). These selection functions for the HMF and
the VTT are shown in Figures 11 and 12 with �cut = 5.2 and
Ncut = 9, respectively. The two methods are qualitatively

similar in terms of their overall performances; for clusters
with �cl � 70, over 80% are recovered to redshift z � 0:45,
falling off rapidly as one goes to z � 0:5. There are still slight
differences; the HMF does better in the high-�cl, intermedi-
ate-z (0:2. z. 0:4) domain, while the VTT seems to per-
form slightly better for clusters with low �cl and low z
(z. 0:2). This can be explained in terms of the generous
C-M cuts adopted for the VTT, intended to account for pos-
sible fluctuations in the cluster color-magnitude properties.
As a result, as one goes to higher redshift, where the C-M
limits start to move in toward the core of the C-M distribu-
tion of normal galaxies (see Fig. 2), the population of gal-
axies that are rejected by this procedure reduces
significantly, making this filtering less effective and therefore
reducing the efficiency of recovering the clusters. At low red-
shifts z. 0:2, on the other hand, it rejects most of the galaxy
background, making the search most efficient. If we were to
narrow these C-M limits, we might bias ourselves against
clusters with unusual properties. This will be tested with real
SDSS clusters by investigating their color-magnitude prop-
erties to determine how tightly we can impose the limits
without biasing the cluster selection.

We compare our selection functions with those of BNP00
(see their Fig. 2), evaluated for cluster detections in the
EDSGC data. The redshift range probed with the EDSGC
is much shallower (z. 0:15; bj < 20:5, which corresponds
roughly to r < 19 for a typical elliptical galaxy) than that of
the SDSS, however, they use the same Monte Carlo tech-
nique by inserting simulated clusters in the real data itself,
making the comparison meaningful. Recall that the cluster
detection completeness depends significantly on the use of
different background distributions, as we have shown in
Figures 9 and 10.

Figure 2 of BNP00 shows the selection function for four
different richnesses as a function of redshift. Their rich-
nesses correspond to �cl = 10.15, 20.3, 40.6, and 81.2,
allowing a straightforward comparison with Figures 11 and
12. For �cl = 20 clusters, their efficiency drops from 70% to
40% over the redshift range of 0:05 � z � 0:15. Neither the
HMF nor the VTT does significantly better for the same
range of parameters, and beyond z � 0:2, clusters with
�cl = 20 are virtually invisible even in the SDSS. However,
for richer clusters, the SDSS clearly does better. For
�cl = 40 clusters, BNP00 shows a steep drop in efficiency to
�60% at z ¼ 0:15, whereas the SDSS efficiencies stay at
�80% out to z ¼ 0:2. Similarly, the recovery of �cl = 70
clusters in the SDSS stays highly efficient (&90%) and con-
stant out to z � 0:4, while BNP00 efficiency for �cl = 80
clusters shows a clear drop from 100% to 80% already at
z ¼ 0:15. The above comparison conforms to what we
would expect: While going deeper in magnitude helps the
recovery of clusters at higher redshifts, there is a limit in the
cluster richness for which this is true. In other words, poor
clusters are hard to find at high redshifts no matter what the
depth of the survey is. Apart from those differences in the
SDSS and EDSGC, the overall performances are qualita-
tively similar, which is reassuring given that our HMF is
quite similar to their method.

4.3. Dependence on Local Background

The final issue we examine from this Monte Carlo experi-
ment is the extent to which the results depend on the local
background density. First, we look at the behavior of the

VTT

HMF

Fig. 9.—Recovery rate of clusters in our Monte Carlo experiment as a
function of the detection thresholds �cut and Ncut for the HMF (solid line)
and the VTT (dashed line), respectively. These recovery rates are evaluated
relative to the clusters that were detected in the uniform background case,
i.e., the average fraction of those clusters recovered in 100 Monte Carlo
realizations. The standard deviations between realizations are traced with
thin lines. The range of �cut andNcut shown here are coincident with the val-
ues that were used to plot Fig. 7. The dotted lines show the performance for
�cut = 5.5 andNcut = 9, which are the values that were determined from the
uniform background case (Figs. 6 and 7, vertical lines).
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detection efficiency at different locations. We divide our
2=5 
 10	 Monte Carlo region into 5 
 20 subregions, �0=5
on a side. This bin size is chosen to be large enough to get an
appreciable number of clusters in each bin for reliable statis-
tics. We then count the number of background galaxies
within each bin Ng (excluding cluster galaxies) and evaluate
the detection efficiency of clusters that fall into each bin.
Figure 13 shows a scatter plot of the cluster detection effi-
ciency as a function of the background density contrast
�g ¼ ðNg � �NNÞ= �NN. We have performed Spearman rank cor-
relation tests (Press et al. 1992) and find that rs = �0.17,
t = �1.72 for the HMF and rs = �0.14, t = �1.39 for the
VTT, where rs is the Spearman rank-order correlation coef-
ficient and t ¼ rs½ðN � 2Þ=ð1� r2s Þ�1=2, which is distributed
like a Student’s t-distribution with N � 2 degrees of free-
dom. This translates into correlations at only 5% and 8%
confidence for the HMF and VTT, respectively, confirming

that neither method shows any significant correlation
between their detection efficiency and the local background
density. This is very encouraging, considering the unambig-
uous dependence that BNP00 have shown for their shal-
lower sample (see Fig. 3 in their paper). This suggests that
our SDSS sample is deep enough to subdue the background
fluctuations by projection effects to a level that it does not
affect the detection efficiency significantly. However, we
have seen in x 4.1 that the overall performance is still highly
influenced by the presence of a nonuniform background,
especially for the matched filter.

We next investigate how HMF parameter evaluations
depend upon the local background density. First, we show
in Figure 14 the input and output values of z and �cl for all
detections in the Monte Carlo simulation. The distribution
of Dz is somewhat positively skewed, implying an over-
estimation of redshifts, which is pronounced as we go to

VTT

HMF

VTT

HMF

VTT

HMF

HMF

VTT

Fig. 10.—Similar to Fig. 9, but this shows the absolute recovery rates of clusters in four different ranges of cluster parameters for the HMF (solid line) and
the VTT (dashed line), averaged over 100Monte Carlo realizations. The 1 � dispersion is traced with thin curves. Four different panels show those for poor low
z clusters (bottom left), poor high z clusters (top left), rich low z clusters (bottom right), and rich high z clusters (top right). Both algorithms agree very well for
clusters with the highest signals (rich, low z), but VTT does slightly better in general for the thresholds determined from the uniform background case:
�cut = 5.5 andNcut = 9. The dotted lines show whereNcut = 9 for the VTT and �cut = 5.2 for the HMF, lowered to this value to match the performance of the
VTT.
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higher z: the median values of Dz are 0.007, 0.02, and 0.05
for input redshift ranges 0 < z � 0:2, 0:2 < z < 0:35, and
z > 0:35, respectively. In addition, half of the clusters with
input redshifts z& 0:4 are recovered with z estimates at the
upper z limit (z ¼ 0:5). This trend was noted in the matched
filter algorithm by P96, which usually happens with weak
signals (poor and/or high-redshift clusters), or in the field

HMF

VTT

Fig. 13.—Detection efficiency as a function of the local background den-
sity contrast. Each circle represents the average fraction of clusters that
were detected among those that were inserted in each independent cell of
area (0.5 deg)2. The density contrast is �g ¼ ðNg � �NNÞ= �NN, where Ng is the
number of background galaxies in each cell and �NN is the average number of
background galaxies in all cells. The top panel shows the results for the
HMF and the bottom for the VTT. The Spearman rank-order correlation
test confirms that neither distribution shows any correlation with the back-
ground density (see text).

Fig. 14.—Input and output parameters evaluated by the HMF (equiva-
lent to the AMF fine filter). The input values are discrete, �cl = 20, 40, 70,
110, 160, and 220, z = 0.08, 0.14, 0.20, 0.26, 0.32, 0.38, 0.42, and 0.5 and
are therefore shown with a random scatter along the x-axes with a width of
�z ¼ 0:03 and ��cl = 20 to facilitate visual identification.

Fig. 11.—Selection function evaluated for the HMF (�cut = 5.2) as a
function of redshift for clusters with different richness measures �cl. Both z
and �cl shown are the input values of the simulated clusters generated with
a Schechter luminosity function using M�

r ¼ �21:7 and � ¼ �1:1 and a
modified Plummer law profile with rmax = 1 h�1Mpc and rc ¼ 0:1 h�1Mpc.

Fig. 12.—Selection function evaluated for the VTT (Ncut = 9), in the
sameMonte Carlo experiment as Fig. 11.
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where there are no clusters, where the number-magnitude
distribution of the background is such that the cluster likeli-
hood calculated yields a monotonically increasing function
with redshift. This could possibly be remedied by tweaking
the input luminosity function to avoid such a trend in the
likelihood function (e.g., flatter faint-end slope), but this
could bias parameter estimation in other ways, and we will
not pursue this here.

We also find that the overestimation of redshift is ampli-
fied by the use of a nonuniform background. We have car-
ried out the experiment of running the HMF on a given set
of simulated clusters in both a uniform and a clustered back-
ground. We find that using the real background indeed
increases the median redshift by about 10%–15% but also
creates a long tail of underestimated redshifts. We suggest
that this is partly due to real clusters in the data that inter-
cept the inserted clusters, thus affecting the output redshifts.
The other concern pertains to the centroid of recovered clus-
ters. While we may recover unbiased values exactly at the
input center, the recovered clusters are always somewhat
‘‘ offset’’ from the real center, and this could lead to some
systematic effects. We thus repeated the Monte Carlo simu-
lation using the true centers and the recovered centers and
found no significant systematic bias in the richness between
the two runs. However, we do find that the number of clus-
ters falsely estimated to be at z ¼ 0:5 was reduced by �15%
with the true centers.

The �cl input and output values are tightly correlated and
do not show many systematic effects, but there is an
extended tail of clusters with overestimated �cl. These are
the clusters that were falsely assigned to z ¼ 0:5, which
boosts the estimated �cl to make up for the loss of galaxies
beyond the magnitude limit. In what follows, we have
left out all detections with zest = 0.5 to avoid such
complications.

For each cluster recovered by the HMF, Figure 15 shows
the difference between the input value and recovered value
of z and the ratio of the input and output values of �cl plot-
ted against the density contrast of the local background, �g.
The value of �g at each cluster position is evaluated from
counts in cell statistics on the background with a radius of
50. This radius is chosen to represent the immediate local
background of a cluster (� 1 Abell radius at the median red-
shift of 0.2), much smaller than what was used for Figure
13, (0.5 deg)2, where the bin was kept large in order to con-
tain enough clusters to do statistics. The figure shows a
slight correlation between the parameters and the local
background density contrast. This is to some degree
expected, since the model assumes a uniform background,
therefore, a higher background density results in a higher
estimation of richness �cl, and vice versa. The redshift
dependence shown in the bottom panel of Figure 15 is due
to the way in which the evaluation of the two parameters z
and �cl are correlated. There are two effects operating. If the
redshift is overestimated, then the angular extent of the clus-
ter (rmax), within which �cl is calculated, is underestimated,
resulting in a underestimated value of �cl. However, if the
redshift is overestimated, the value of �cl is overcompen-
sated for the loss of galaxies fainter than the survey limit,
but this effect is only significant near the faint limit of the
survey (at the high-z limit). Since the majority of recovered
clusters are those at lower redshifts, the results exhibit an
anticorrelation between the evaluated z and �cl. Figure 15
also demonstrates that most of the outliers in the parameter

evaluations are high-redshift clusters (z > 0:3), shown as
circles in the scatter plot.

5. DISCUSSION AND SUMMARY

We have presented a comparison of three cluster-finding
algorithms that are being used to define a cluster catalog
from commissioning data of the SDSS. The three algo-
rithms are two matched filter algorithms (MF and AMF)
and the VTT, which is introduced in its current form in this
paper. By applying both matched filters on the same galaxy
distribution, we have found that the MF is more efficient in
locating the clusters, whereas the AMF evaluates the cluster
parameters more accurately. This has motivated us to put
forward a hybrid method (HMF) that uses the MF to select
clusters and the AMF to evaluate the redshifts and the rich-
nesses for those clusters.

The MF is more efficient in selecting clusters than the
AMF is because its thresholding method is redshift depen-
dent. The AMF locates peaks in redshift space first and
selects candidates with a signal above a prescribed threshold
regardless of the redshift. On the other hand, the MF selects
cluster candidates from peaks in the likelihood map of each
assumed redshift; those lying above a threshold that is newly
determined from each map. As similar clusters at different
redshifts will have very different signals (weakening as one
goes to higher z), it is not surprising to find that a redshift-
dependent cut results in a better performance. Hence in
future work, the AMF should be modified to adopt the peak
selection procedure of the MF for better performance in

Fig. 15.—Dependence of the parameters evaluated by the HMF (equiva-
lent to the AMF fine filter) on the local background density contrast. Each
point represents one cluster; the difference in the input and output values of
z and the ratio of input and output �cl are plotted against �g of the back-
ground galaxy distribution, evaluated within a circle of r = 50 around each
cluster. The distributions of the points are shown as histograms on the left.
The crosses are clusters that have an input redshift z � 0:3, the circles are
clusters with input redshift 0:3 < z < 0:5. The outliers are mostly high-red-
shift clusters whose signals are weaker.

34 KIM ET AL. Vol. 123



order to make use of the further advantages in the AMF
(e.g., using three-dimensional information and a paralleliza-
tion scheme; Kepner &Kim 2000).

In the VTTmethod, we have applied a filter in color-mag-
nitude space to select galaxies that are most likely members
of clusters at a certain redshift. This greatly enhances their
contrast relative to the background. This idea is in principle
yet another example of a matched filter; this time in color-
magnitude space, although it is not a maximum likelihood
method like the MF or the AMF. There are a number of
existing algorithms that efficiently use this color-magnitude
relation as a filter but are more restrictive: the red sequence
method of Yee, Gladders, & López-Cruz (1999; Gladders &
Yee 2000) and the maxBCG technique (also applied to the
SDSS) of Annis et al. (2002). While using a restrictive color-
magnitude relation could enhance the efficiency quite a bit,
it is also likely to suffer from selection biases, such as missing
clusters with significant blue populations of galaxies,
namely, the Butcher-Oemler (1984) clusters.

Our current C-M filter for the VTT is generous, so that
we can focus on the differences from the matched filter algo-
rithms, where a specific cluster model is used. These differen-
ces will be further discussed in Paper II with real clusters; in
the current paper, we investigate the performance of this
new method only with simulated clusters that exactly follow
the spatial and luminosity profile assumed by the matched
filter. Despite this advantage for theMF, the VTT has a sim-
ilar selection function and better false-positive rate com-
pared with the MF, which points to the power of the
technique and suggests that photometric redshifts (which
use color information) will significantly improve the per-
formance of the AMF.

A Monte Carlo test for the HMF and the VTT was car-
ried out with simulated clusters inserted in 25 deg2 of SDSS
background. We found that the HMF shows a larger drop
in detection efficiency in the presence of a nonuniform back-
ground than does the VTT. This effect may be due not only
to the nonuniformity, but also to overlapping foreground
and background clusters in the data, which can cause some
of the inserted clusters to be overlooked. This effect is
roughly 15% for Abell RC �0 clusters in the redshift range
of our interest, if we assume a random distribution of clus-
ters. The VTT uses color information (although generous)
that provides stability against such contamination, while
the HMF assumes a uniform background and hence is
affected more by this nonuniformity. Thus, using a proper
model of the background as a function of position can fur-
ther improve the efficiency of the HMF (Lobo et al. 2000).

We have determined appropriate detection thresholds for
the final cluster catalog that is to be drawn from the SDSS
data itself. These thresholds are �cut = 5.2 and Ncut = 9 for
the HMF and the VTT, respectively. These values give a
reasonable recovery fraction; only 15% of clusters detected
in the uniform background case are not recovered with the
realistic background, while the lower limit on false detec-
tions, being a small fraction of the expected surface density
of real systems, is acceptable (1 deg�2 for the HMF and 0.56
deg�2 for the VTT).

The selection functions for both algorithms were eval-
uated using these detection thresholds. The performance of
both methods are very similar, although the VTT efficiency
tends to drop in the intermediate-redshift range compared
with the HMF and is slightly better for lower redshift. Both

methods are complete for rich clusters (�cl � 70) up to
z& 0:4. We compare our selections functions with those of
BNP00, where a similar cluster-finding technique was used
to find clusters in shallower data. We find that the perform-
ances are similar for the very low richness clusters (� � 20),
while the SDSS outperforms BNP00 by going deeper for the
richer clusters (� � 40).

Finally, we have shown that the detection efficiencies of
both the HMF and the VTT are nearly independent of the
local density of the background, while the estimated redshift
and richness from the HMF are only slightly biased as a
function of the local background density.

In Paper II, we present the cluster catalog compiled from
the SDSS data using these two methods, the HMF and the
VTT. With this we will be able to test various properties of
the algorithms using real clusters. Photometric redshifts for
the SDSS, soon available, will significantly improve the
AMF in particular. In future work, it should be very inter-
esting to compare the above methods with other existing
techniques, e.g., the maxBCG technique (Annis et al. 2002),
which uses far more restrictive color-magnitude informa-
tion than the VTT, Cut and Enhance (Goto et al. 2001),
which uses the proximity in color space as an enhancement
method, or the Expectation-Maximization algorithm
(Nichol et al. 2000), which does not impose any model con-
straints at all. Different algorithms show different results
mainly for the fainter clusters—poor or distant clusters—
the regime where clusters are abundant but our understand-
ing is poor. Their detection will inevitably depend on differ-
ent aspects of the method that is used. If one were to explore
the properties of cluster parameters, such as the luminosity
function or the density profile, using the matched filter that
constrains these models a priori will be highly inappropri-
ate; when exploring the density-morphology relation of
clusters, one should avoid using any color constraints in
their selection. Therefore, there will be no one technique
ideal for all aspects of cluster science; each cluster catalog
should be accompanied with a proper understanding of the
nature of the detection method, so that it can be used for
appropriate cluster studies.
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191, Photometric Redshifts and the Detection of High Redshift Galaxies,
ed. R. Weymann, L. Storrie-Lombardi, M. Sawicki, & R. Brunner (San
Francisco: ASP), 166

York, D., et al. 2000, AJ, 120, 1579
Zabludoff, A. I., &Mulchaey, J. S. 1998, ApJ, 496, 39
Zwicky, F., Herzog, E., Wild, P., Karpowicz, M., & Kowal, C. 1961–1968,
Catalog of Galaxies and Clusters of Galaxies, Vol. 1–6 (Pasadena: Cal-
tech)

36 KIM ET AL.


